Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.035
Filter
1.
Neurología (Barc., Ed. impr.) ; 39(4): 353-360, May. 2024. tab, graf
Article in English | IBECS | ID: ibc-232518

ABSTRACT

Background: Glioma presents high incidence and poor prognosis, and therefore more effective treatments are needed. Studies have confirmed that long non-coding RNAs (lncRNAs) basically regulate various human diseases including glioma. It has been theorized that HAS2-AS1 serves as an lncRNA to exert an oncogenic role in varying cancers. This study aimed to assess the value of lncRNA HAS2-AS1 as a diagnostic and prognostic marker for glioma. Methods: The miRNA expression data and clinical data of glioma were downloaded from the TCGA database for differential analysis and survival analysis. In addition, pathological specimens and specimens of adjacent normal tissue from 80 patients with glioma were used to observe the expression of HAS2-AS1. The receiver operating characteristic (ROC) curve was used to analyze the diagnostic ability and prognostic value of HAS2-AS1 in glioma. Meanwhile, a Kaplan–Meier survival curve was plotted to evaluate the survival of glioma patients with different HAS2-AS1 expression levels. Results: HAS2-AS1 was significantly upregulated in glioma tissues compared with normal tissue. The survival curves showed that overexpression of HAS2-AS1 was associated with poor overall survival (OS) and progression-free survival (PFS). Several clinicopathological factors of glioma patients, including tumor size and WHO grade, were significantly correlated with HAS2-AS1 expression in tissues. The ROC curve showed an area under the curve (AUC) value of 0.863, indicating that HAS2-AS1 had good diagnostic value. The ROC curve for the predicted OS showed an AUC of 0.906, while the ROC curve for predicted PFS showed an AUC of 0.88. Both suggested that overexpression of HAS2-AS1 was associated with poor prognosis.Conclusions: Normal tissues could be clearly distinguished from glioma tissues based on HAS2-AS1 expression. Moreover, overexpression of HAS2-AS1 indicated poor prognosis in glioma patients.(AU)


Introducción: Los gliomas presentan una alta incidencia y un mal pronóstico, por lo que es necesario un tratamiento más efectivo. Algunos estudios han confirmado que los ARN no codificantes de cadena larga (ARNncl) regulan diferentes enfermedades, entre las que se incluyen los gliomas. Se ha postulado que HAS2-AS1 actúa como un ARNncl, con un efecto oncogénico en diferentes tipos de cáncer. Este estudio tiene como objetivo analizar el valor del ARNncl HAS2-AS1 como marcador diagnóstico y pronóstico de glioma. Métodos: Descargamos los datos clínicos y de expresión de micro-ARN de la base de datos del Atlas del Genoma del Cáncer (TCGA) para realizar el análisis diferencial y de supervivencia. También analizamos la expresión de HAS2-AS1 en muestras patológicas y muestras de tejido adyacente normal de 80 pacientes con glioma. Para analizar la capacidad diagnóstica y el valor pronóstico de HAS2-AS1 en el glioma, recurrimos a la curva ROC. También utilizamos curvas de Kaplan-Meier para evaluar la supervivencia de los pacientes con glioma con diferentes niveles de expresión de HAS2-AS1. Resultados: La expresión de HAS2-AS1 era significativamente mayor en las muestras patológicas que en el tejido normal. Las curvas de supervivencia demostraron que la sobreexpresión de HAS2-AS1 estaba relacionada con una menor supervivencia general y supervivencia libre de progresión. Algunos factores clínico-patológicos de los pacientes con glioma, como el tamaño del tumor y su grado, según la clasificación de la OMS, mostraron una correlación significativa con la expresión de HAS2-AS1 en los tejidos afectados. La curva ROC mostró un área bajo la curva de 0,863, lo que indica que la expresión de HAS2-AS1 posee un importante valor diagnóstico. El área bajo la curva de la supervivencia general estimada fue de 0,906; para la supervivencia libre de progresión estimada, de 0,88. Ambos valores muestran que la sobreexpresión de HAS2-AS1 se asocia con un mal pronóstico...(AU)


Subject(s)
Humans , Male , Female , Prognosis , Biomarkers , Glioma/diagnosis , Glioma/genetics , RNA, Long Noncoding/genetics , Hyaluronan Synthases
2.
Neurologia (Engl Ed) ; 39(4): 353-360, 2024 May.
Article in English | MEDLINE | ID: mdl-38616063

ABSTRACT

BACKGROUND: Glioma presents high incidence and poor prognosis, and therefore more effective treatments are needed. Studies have confirmed that long non-coding RNAs (lncRNAs) basically regulate various human diseases including glioma. It has been theorized that HAS2-AS1 serves as an lncRNA to exert an oncogenic role in varying cancers. This study aimed to assess the value of lncRNA HAS2-AS1 as a diagnostic and prognostic marker for glioma. METHODS: The miRNA expression data and clinical data of glioma were downloaded from the TCGA database for differential analysis and survival analysis. In addition, pathological specimens and specimens of adjacent normal tissue from 80 patients with glioma were used to observe the expression of HAS2-AS1. The receiver operating characteristic (ROC) curve was used to analyze the diagnostic ability and prognostic value of HAS2-AS1 in glioma. Meanwhile, a Kaplan-Meier survival curve was plotted to evaluate the survival of glioma patients with different HAS2-AS1 expression levels. RESULTS: HAS2-AS1 was significantly upregulated in glioma tissues compared with normal tissue. The survival curves showed that overexpression of HAS2-AS1 was associated with poor overall survival (OS) and progression-free survival (PFS). Several clinicopathological factors of glioma patients, including tumor size and WHO grade, were significantly correlated with HAS2-AS1 expression in tissues. The ROC curve showed an area under the curve (AUC) value of 0.863, indicating that HAS2-AS1 had good diagnostic value. The ROC curve for the predicted OS showed an AUC of 0.906, while the ROC curve for predicted PFS showed an AUC of 0.88. Both suggested that overexpression of HAS2-AS1 was associated with poor prognosis. CONCLUSIONS: Normal tissues could be clearly distinguished from glioma tissues based on HAS2-AS1 expression. Moreover, overexpression of HAS2-AS1 indicated poor prognosis in glioma patients. Therefore, HAS2-AS1 could be used as a diagnostic and prognostic marker for glioma.


Subject(s)
Glioma , RNA, Long Noncoding , Humans , Glioma/diagnosis , Glioma/genetics , Hyaluronan Synthases , Prognosis , RNA, Long Noncoding/genetics , ROC Curve
3.
Front Endocrinol (Lausanne) ; 15: 1274376, 2024.
Article in English | MEDLINE | ID: mdl-38524634

ABSTRACT

The leading indicator for successful outcomes in in-vitro fertilization (IVF) is the quality of gametes in oocytes and sperm. Thus, advanced research aims to highlight the parameter in assessing these qualities - DNA fragmentation in sperm and oocyte development capacity (ODC) via evaluation of microenvironments involving its maturation process. Regarding oocytes, most evidence reveals the role of cumulus cells as non-invasive methods in assessing their development competency, mainly via gene expression evaluation. Our review aims to consolidate the evidence of GDF-9 derivatives, the HAS2, GREM1, and PTGS2 gene expression in cumulus cells used as ODC markers in relevant publications and tailored to current IVF outcomes. In addition to that, we also added the bioinformatic analysis in our review to strengthen the evidence aiming for a better understanding of the pathways and cluster of the genes of interest - HAS2, GREM1, and PTGS2 in cumulus cell level. Otherwise, the current non-invasive method can be used in exploring various causes of infertility that may affect these gene expressions at the cumulus cell level. Nevertheless, this method can also be used in assessing the ODC in various cohorts of women or as an improvement of markers following targeted tools or procedures by evaluating the advancement of these gene expressions following the targeted intervention.


Subject(s)
Cumulus Cells , Semen , Humans , Male , Female , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cumulus Cells/metabolism , Oocytes/metabolism , Gene Expression , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Hyaluronan Synthases/metabolism
4.
Phytomedicine ; 128: 155456, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537446

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is a heterogeneous metabolic and endocrine disorder that causes anovulatory infertility and abnormal folliculogenesis in women of reproductive age. Several studies have revealed inflammation in PCOS follicles, and recent evidence suggests that Berberine (BBR) effectively reduces inflammatory responses in PCOS, however, the underlying mechanisms remain unclear. PURPOSE: To determine the underlying mechanisms by which BBR alleviates inflammation in PCOS. STUDY DESIGN: Primary human GCs from healthy women and women with PCOS, and KGN cells were used for in vitro studies. ICR mice were used for in vivo studies. METHODS: Gene expression was measured using RT-qPCR. HAS2, inflammatory cytokines, and serum hormones were assayed by ELISA. Protein expression profiles were assayed by Western blot. Chronic low-grade inflammatory mouse models were developed by intraperitoneal injection with LPS, and PCOS mouse models were established by subcutaneous intraperitoneal injection of DHEA. BBR and 4-MU were administered by gavage. Ovarian morphologic changes were evaluated using H&E staining. HAS2 expression in the ovary was assayed using Western blot and immunohistochemistry. RESULTS: Our results confirmed that HAS2 expression and hyaluronan (HA) accumulation are closely associated with inflammatory responses in PCOS. Data obtained from in vitro studies showed that HAS2 and inflammatory genes (e.g., MCP-1, IL-1ß, and IL-6) are significantly upregulated in PCOS samples and LPS-induced KGN cells compared to their control groups. In addition, these effects were reversed by blocking HAS2 expression or HA synthesis using BBR or 4-MU, respectively. Furthermore, HAS2 overexpression induces the expression of inflammatory genes in PCOS. These results were further confirmed in LPS- and DHEA-induced mouse models, where inflammatory genes were reduced by BBR or 4-MU, and ovarian morphology was restored. CONCLUSIONS: Our results define previously unknown links between HAS2 and chronic low-grade inflammation in the follicles of women with PCOS. BBR exerts its anti-inflammatory effects by down-regulating HAS2. This study provides a novel therapeutic target for alleviating ovarian inflammation in women with PCOS.


Subject(s)
Berberine , Disease Models, Animal , Hyaluronan Synthases , Inflammation , Mice, Inbred ICR , Polycystic Ovary Syndrome , Polycystic Ovary Syndrome/drug therapy , Berberine/pharmacology , Female , Animals , Humans , Hyaluronan Synthases/metabolism , Inflammation/drug therapy , Mice , Hyaluronic Acid , Adult , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Dehydroepiandrosterone/pharmacology , Ovary/drug effects , Lipopolysaccharides , Cytokines/metabolism
5.
Matrix Biol ; 129: 29-43, 2024 May.
Article in English | MEDLINE | ID: mdl-38518923

ABSTRACT

As the backbone of the extracellular matrix (ECM) and the perineuronal nets (PNNs), hyaluronic acid (HA) provides binding sites for proteoglycans and other ECM components. Although the pivotal of HA has been recognized in Alzheimer's disease (AD), few studies have addressed the relationship between AD pathology and HA synthases (HASs). Here, HASs in different regions of AD brains were screened in transcriptomic database and validated in AßPP/PS1 mice. We found that HAS1 was distributed along the axon and nucleus. Its transcripts were reduced in AD patients and AßPP/PS1 mice. Phosphorylated tau (p-tau) mediates AßPP-induced cytosolic-nuclear translocation of HAS1, and negatively regulated the stability, monoubiquitination, and oligomerization of HAS1, thus reduced the synthesis and release of HA. Furthermore, non-ubiquitinated HAS1 mutant lost its enzyme activity, and translocated from the cytosol into the nucleus, forming nuclear speckles (NS). Unlike the splicing-related NS, less than 1 % of the non-ubiquitinated HAS1 co-localized with SRRM2, proving the regulatory role of HAS1 in gene transcription, indirectly. Thus, differentially expressed genes (DEGs) related to both non-ubiquitinated HAS1 mutant and AD were screened using transcriptomic datasets. Thirty-nine DEGs were identified, with 64.1 % (25/39) showing consistent results in both datasets. Together, we unearthed an important function of the AßPP-p-tau-HAS1 axis in microenvironment remodeling and gene transcription during AD progression, involving the ubiquitin-proteasome, lysosome, and NS systems.


Subject(s)
Alzheimer Disease , Cell Nucleus , Hyaluronan Synthases , tau Proteins , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Humans , tau Proteins/metabolism , tau Proteins/genetics , Mice , Hyaluronan Synthases/metabolism , Hyaluronan Synthases/genetics , Cell Nucleus/metabolism , Cell Nucleus/genetics , Transcription, Genetic , Phosphorylation , Disease Models, Animal , Gene Expression Regulation , Mice, Transgenic , Ubiquitination
6.
J Pineal Res ; 76(2): e12940, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38402581

ABSTRACT

Hyaluronic acid (HA) is a glycosaminoglycan and the main component of the extracellular matrix (ECM), which has been reported to interact with its receptor CD44 to play critical roles in the self-renewal and maintenance of cancer stem cells (CSCs) of multiple malignancies. Melatonin is a neuroendocrine hormone with pleiotropic antitumor properties. However, whether melatonin could regulate HA accumulation in the ECM to modulate the stemness of head and neck squamous cell carcinoma (HNSCC) remains unknown. In this study, we found that melatonin suppressed CSC-related markers, such as CD44, of HNSCC cells and decreased the tumor-initiating frequency of CSCs in vivo. In addition, melatonin modulated HA synthesis of HNSCC cells by downregulating the expression of hyaluronan synthase 3 (HAS3). Further study showed that the Fos-like 1 (FOSL1)/HAS3 axis mediated the inhibitory effects of melatonin on HA accumulation and stemness of HNSCC in a receptor-independent manner. Taken together, melatonin modulated HA synthesis through the FOSL1/HAS3 axis to inhibit the stemness of HNSCC cells, which elucidates the effect of melatonin on the ECM and provides a novel perspective on melatonin in HNSCC treatment.


Subject(s)
Hyaluronan Synthases , Melatonin , Proto-Oncogene Proteins c-fos , Squamous Cell Carcinoma of Head and Neck , Humans , Cell Line, Tumor , Hyaluronan Synthases/metabolism , Melatonin/pharmacology , Neoplastic Stem Cells/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Proto-Oncogene Proteins c-fos/metabolism
7.
Sci Rep ; 14(1): 2797, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38307876

ABSTRACT

Hepatic fibrosis remains a significant clinical challenge due to ineffective treatments. 4-methylumbelliferone (4MU), a hyaluronic acid (HA) synthesis inhibitor, has proven safe in phase one clinical trials. In this study, we aimed to ameliorate liver fibrosis by inhibiting HA synthesis. We compared two groups of mice with CCl4-induced fibrosis, treated with 4-methylumbelliferone (4MU) and hyaluronan synthase 2 (HAS2) targeting siRNA (siHAS2). The administration of 4MU and siHAS2 significantly reduced collagen and HA deposition, as well as biochemical markers of hepatic damage induced by repeated CCl4 injections. The transcriptomic analysis revealed converging pathways associated with downstream HA signalling. 4MU- and siHAS2-treated fibrotic livers shared 405 upregulated and 628 downregulated genes. These genes were associated with xenobiotic and cholesterol metabolism, mitosis, endoplasmic reticulum stress, RNA processing, and myeloid cell migration. The functional annotation of differentially expressed genes (DEGs) in siHAS2-treated mice revealed attenuation of extracellular matrix-associated pathways. In comparison, in the 4MU-treated group, DEGs were related to lipid and bile metabolism pathways and cell cycle. These findings confirm that HAS2 is an important pharmacological target for suppressing hepatic fibrosis using siRNA.


Subject(s)
Hyaluronic Acid , Hymecromone , Animals , Mice , Gene Expression Profiling , Hyaluronan Synthases/genetics , Hyaluronan Synthases/metabolism , Hyaluronic Acid/metabolism , Hymecromone/pharmacology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , RNA, Small Interfering
8.
Biochimie ; 220: 58-66, 2024 May.
Article in English | MEDLINE | ID: mdl-38158036

ABSTRACT

Naked mole rats (NMRs) are renowned for their exceptional longevity and remarkable maintenance of health throughout their lifetime. Their subterranean lifestyle has led to adaptations that have resulted in elevated levels of a very high molecular weight hyaluronan in their tissues. Hyaluronan, a glycosaminoglycan, is a key component of the extracellular matrix, which plays a critical role in maintaining tissue structure and regulating cell signaling pathways. This phenomenon in NMRs is attributed to a higher processing and production capacity by some of their hyaluronan synthases, along with lower degradation by certain hyaluronidases. Furthermore, this adaptation indirectly confers several advantages to NMRs, such as the preservation of skin elasticity and youthful appearance, accelerated wound healing, protection against oxidative stress, and resistance to conditions such as cancer and arthritis, largely attributable to CD44 signaling and other intricate mechanisms. Thus, the main objective of this study was to conduct a comprehensive study of the distinctive features of NMR hyaluronan, particularly emphasizing the currently known molecular mechanisms that contribute to its beneficial properties. Furthermore, this research delves into the potential applications of NMR hyaluronan in both cosmetic and therapeutic fields, as well as the challenges involved.


Subject(s)
Hyaluronic Acid , Mole Rats , Hyaluronic Acid/metabolism , Animals , Hyaluronan Synthases/metabolism , Hyaluronan Synthases/genetics , Humans , Signal Transduction , Hyaluronan Receptors/metabolism
9.
Matrix Biol ; 124: 23-38, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37949327

ABSTRACT

The prevalence of dry eye disease (DED) ranges from ∼5 to 50 % and its associated symptoms decrease productivity and reduce the quality of life. Approximately 85 % of all DED cases are caused by Meibomian gland dysfunction (MGD). As humans and mice age, their Meibomian glands (MGs) undergo age-related changes resulting in age related-MGD (ARMGD). The precise cause of ARMGD remains elusive, which makes developing therapies extremely challenging. We previously demonstrated that a hyaluronan (HA)-rich matrix exists surrounding the MG, regulating MG morphogenesis and homeostasis. Herein, we investigated whether changes to the HA matrix in the MG throughout life contributes towards ARMGD, and whether altering this HA matrix can prevent ARMGD. For such, HA synthase (Has) knockout mice were aged and compared to age matched wild type (wt) mice. MG morphology, lipid production, PPARγ expression, basal cell proliferation, stem cells, presence of atrophic glands and MG dropout were analyzed at 8 weeks, 6 months, 1 year and 2 years of age and correlated with the composition of the HA matrix. We found that as mice age, there is a loss of HA expression in and surrounding the MGs of wt mice, while, in contrast, Has1-/-Has3-/- mice present a significant increase in HA expression through Has2 upregulation. At 1 year, Has1-/-Has3-/- mice present significantly enlarged MGs, compared to age-matched wt mice and compared to all adult mice. Thus, Has1-/-Has3-/- mice continue to develop new glandular tissue as they age, instead of suffering MG atrophy. At 2 years, Has1-/-Has3-/- mice continue to present significantly larger MGs compared to age-matched wt mice. Has1-/-Has3-/- mice present increased lipid production, increased PPARγ expression and an increase in the number of proliferating cells when compared to wt mice at all-time points analyzed. Taken together, our data shows that a loss of the HA matrix surrounding the MG as mice age contributes towards ARMGD, and increasing Has2 expression, and consequently HA levels, prevents ARMGD in mice.


Subject(s)
Hyaluronic Acid , Meibomian Gland Dysfunction , Mice , Humans , Animals , Aged , Hyaluronic Acid/metabolism , Glucuronosyltransferase , PPAR gamma/genetics , Quality of Life , Hyaluronan Synthases/genetics , Mice, Knockout , Lipids
10.
Glycobiology ; 33(12): 1117-1127, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37769351

ABSTRACT

Hyaluronan (HA), the essential [-3-GlcNAc-1-ß-4-GlcA-1-ß-]n matrix polysaccharide in vertebrates and molecular camouflage coating in select pathogens, is polymerized by "HA synthase" (HAS) enzymes. The first HAS identified three decades ago opened the window for new insights and biotechnological tools. This review discusses current understanding of HA biosynthesis, its biotechnological utility, and addresses some misconceptions in the literature. HASs are fascinating enzymes that polymerize two different UDP-activated sugars via different glycosidic linkages. Therefore, these catalysts were the first examples to break the "one enzyme/one sugar transferred" dogma. Three distinct types of these bifunctional glycosyltransferases (GTs) with disparate architectures and reaction modes are known. Based on biochemical and structural work, we present an updated classification system. Class I membrane-integrated HASs employ a processive chain elongation mechanism and secrete HA across the plasma membrane. This complex operation is accomplished by functionally integrating a cytosolic catalytic domain with a channel-forming transmembrane region. Class I enzymes, containing a single GT family-2 (GT-2) module that adds both monosaccharide units to the nascent chain, are further subdivided into two groups that construct the polymer with opposite molecular directionalities: Class I-R and I-NR elongate the HA polysaccharide at either the reducing or the non-reducing end, respectively. In contrast, Class II HASs are membrane-associated peripheral synthases with a non-processive, non-reducing end elongation mechanism using two independent GT-2 modules (one for each type of monosaccharide) and require a separate secretion system for HA export. We discuss recent mechanistic insights into HA biosynthesis that promise biotechnological benefits and exciting engineering approaches.


Subject(s)
Glucuronosyltransferase , Glycosyltransferases , Animals , Hyaluronan Synthases/genetics , Glycosyltransferases/genetics , Glucuronosyltransferase/chemistry , Glucuronosyltransferase/metabolism , Hyaluronic Acid/chemistry , Polysaccharides , Uridine Diphosphate Sugars , Monosaccharides
11.
Oncogene ; 42(44): 3221-3235, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37704784

ABSTRACT

Chemotherapy resistance represents a major cause of therapeutic failure and mortality in cancer patients. Mesenchymal stromal cells (MSCs), an integral component of tumor microenvironment, are known to promote drug resistance. However, the detailed mechanisms remain to be elucidated. Here, we found that MSCs confer breast cancer resistance to doxorubicin by diminishing its intratumoral accumulation. Hyaluronan (HA), a major extracellular matrix (ECM) product of MSCs, was found to mediate the chemoresistant effect. The chemoresistant effect of MSCs was abrogated when hyaluronic acid synthase 2 (HAS2) was depleted or inhibited. Exogenous HA also protected tumor grafts from doxorubicin. Molecular dynamics simulation analysis indicates that HA can bind with doxorubicin, mainly via hydrophobic and hydrogen bonds, and thus reduce its entry into breast cancer cells. This mechanism is distinct from the reported chemoresistant effect of HA via its receptor on cell surface. High HA serum levels were also found to be positively associated with chemoresistance in breast cancer patients. Our findings indicate that the HA-doxorubicin binding dynamics can confer cancer cells chemoresistance. Reducing HA may enhance chemotherapy efficacy.


Subject(s)
Breast Neoplasms , Mesenchymal Stem Cells , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Hyaluronic Acid/metabolism , Doxorubicin/pharmacology , Hyaluronan Synthases/metabolism , Extracellular Matrix/metabolism , Mesenchymal Stem Cells/metabolism , Hyaluronan Receptors/metabolism , Tumor Microenvironment
12.
EMBO Rep ; 24(10): e55506, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37705505

ABSTRACT

N6 -methyladenosine (m6 A), the most abundant internal modification in eukaryotic mRNA, plays important roles in many physiological and pathological processes, including the development and progression of cancer. RNA modification by m6 A is regulated by methyltransferases, demethylases, and m6 A-binding proteins that function in large part by regulating mRNA expression and function. Here, we investigate the expression of m6 A regulatory proteins in breast cancer. We find that expression of KIAA1429/VIRMA, a component of the m6 A methyltransferase complex, is upregulated in breast cancer tissue and correlates positively with poor survival. KIAA1429/VIRMA is mislocalized to the cytosol of breast cancer tissues and cell lines, and shRNA-mediated knockdown inhibits breast cancer cell proliferation, migration, and invasion. Mechanistically, KIAA1429/VIRMA is shown to bind to the m6 A-dependent RNA-binding protein insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), leading to recruitment and stabilization of m6 A-modified hyaluronan synthase 2 (HAS2) mRNA. HAS2 mRNA and KIAA1429/VIRMA mRNA levels correlate positively in breast cancer tissues, suggesting that the KIAA1429/VIRMA-IGF2BP3-HAS2 axis promotes breast cancer growth and contributes to poor prognosis.


Subject(s)
Neoplasms , Humans , Cytosol , Hyaluronan Synthases , Cytoplasm , RNA, Messenger/genetics
13.
Nature ; 621(7977): 196-205, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37612507

ABSTRACT

Abundant high-molecular-mass hyaluronic acid (HMM-HA) contributes to cancer resistance and possibly to the longevity of the longest-lived rodent-the naked mole-rat1,2. To study whether the benefits of HMM-HA could be transferred to other animal species, we generated a transgenic mouse overexpressing naked mole-rat hyaluronic acid synthase 2 gene (nmrHas2). nmrHas2 mice showed an increase in hyaluronan levels in several tissues, and a lower incidence of spontaneous and induced cancer, extended lifespan and improved healthspan. The transcriptome signature of nmrHas2 mice shifted towards that of longer-lived species. The most notable change observed in nmrHas2 mice was attenuated inflammation across multiple tissues. HMM-HA reduced inflammation through several pathways, including a direct immunoregulatory effect on immune cells, protection from oxidative stress and improved gut barrier function during ageing. These beneficial effects were conferred by HMM-HA and were not specific to the nmrHas2 gene. These findings demonstrate that the longevity mechanism that evolved in the naked mole-rat can be exported to other species, and open new paths for using HMM-HA to improve lifespan and healthspan.


Subject(s)
Healthy Aging , Hyaluronan Synthases , Hyaluronic Acid , Longevity , Mole Rats , Animals , Mice , Hyaluronic Acid/biosynthesis , Hyaluronic Acid/metabolism , Inflammation/genetics , Inflammation/immunology , Inflammation/prevention & control , Mice, Transgenic , Mole Rats/genetics , Longevity/genetics , Longevity/immunology , Longevity/physiology , Hyaluronan Synthases/genetics , Hyaluronan Synthases/metabolism , Healthy Aging/genetics , Healthy Aging/immunology , Healthy Aging/physiology , Transgenes/genetics , Transgenes/physiology , Transcriptome , Neoplasms/genetics , Neoplasms/prevention & control , Oxidative Stress , Geroscience , Rejuvenation/physiology
14.
Adv Biol (Weinh) ; 7(12): e2300168, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37615259

ABSTRACT

Hyaluronan (HA) is one of the major components of the extracellular matrix in tumor tissue. Recent reports have made it clear that the balance of HA synthesis and degradation is critical for tumor progression. HA is synthesized on the cytoplasmic surface of the plasma membrane by hyaluronan synthases (HAS) and extruded into the extracellular space. Excessive HA production in cancer is associated with enhanced HA degradation in the tumor microenvironment, leading to the accumulation of HA fragments with small molecular weight. These perturbations in both HA synthesis and degradation may play important roles in tumor progression. Recently, it has become increasingly clear that small HA fragments can induce a variety of biological events, such as angiogenesis, cancer-promoting inflammation, and tumor-associated immune suppression. Progression of urologic malignancies, particularly of prostate and bladder cancers, as well as of certain types of kidney cancer show markedly perturbed metabolism of tumor-associated HA. This review highlights the recent research findings regarding HA metabolism in tumor microenvironments with a special focus on urologic cancers. It also will discuss the potential implications of these findings for the development of novel therapeutic interventions for the treatment of prostate, bladder, and kidney cancers.


Subject(s)
Hyaluronic Acid , Urologic Neoplasms , Male , Humans , Hyaluronic Acid/metabolism , Hyaluronan Synthases/genetics , Hyaluronan Synthases/metabolism , Urologic Neoplasms/metabolism , Inflammation/metabolism , Extracellular Matrix/metabolism , Tumor Microenvironment
15.
Appl Microbiol Biotechnol ; 107(16): 5119-5129, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37405432

ABSTRACT

The efficiency of de novo synthesis of hyaluronic acid (HA) using Pasteurella multocida hyaluronate synthase (PmHAS) is limited by its low catalytic activity during the initial reaction steps when monosaccharides are the acceptor substrates. In this study, we identified and characterized a ß-1,4-N-acetylglucosaminyl-transferase (EcGnT) derived from the O-antigen gene synthesis cluster of Escherichia coli O8:K48:H9. Recombinant ß1,4 EcGnT effectively catalyzed the production of HA disaccharides when the glucuronic acid monosaccharide derivative 4-nitrophenyl-ß-D-glucuronide (GlcA-pNP) was used as the acceptor. Compared with PmHAS, ß1,4 EcGnT exhibited superior N-acetylglucosamine transfer activity (~ 12-fold) with GlcA-pNP as the acceptor, making it a better option for the initial step of de novo HA oligosaccharide synthesis. We then developed a biocatalytic approach for size-controlled HA oligosaccharide synthesis using the disaccharide produced by ß1,4 EcGnT as a starting material, followed by stepwise PmHAS-catalyzed synthesis of longer oligosaccharides. Using this approach, we produced a series of HA chains of up to 10 sugar monomers. Overall, our study identifies a novel bacterial ß1,4 N-acetylglucosaminyltransferase and establishes a more efficient process for HA oligosaccharide synthesis that enables size-controlled production of HA oligosaccharides. KEY POINTS: • A novel ß-1,4-N-acetylglucosaminyl-transferase (EcGnT) from E. coli O8:K48:H9. • EcGnT is superior to PmHAS for enabling de novo HA oligosaccharide synthesis. • Size-controlled HA oligosaccharide synthesis relay using EcGnT and PmHAS.


Subject(s)
Hyaluronic Acid , Pasteurella multocida , N-Acetylglucosaminyltransferases/genetics , Escherichia coli/genetics , Oligosaccharides/chemistry , Hyaluronan Synthases , Transferases , Pasteurella multocida/genetics
16.
PLoS One ; 18(7): e0274479, 2023.
Article in English | MEDLINE | ID: mdl-37418356

ABSTRACT

Cordyceps cicadae (Miq.) is an edible fungus with unique and valuable medicinal properties that is commonly used in traditional Chinese medicine, but its anti-aging effects on the skin fibroblast are not well studied. The aim of the present study was to analyze the active components of aqueous C. cicadae extract (CCE), determine the effects of CCE on hyaluronan synthesis in human skin fibroblasts, and explore the underlying mechanisms. The results of this study indicate that CCE was rich in polysaccharides, five alditols (mainly mannitol), eight nucleosides, protein, and polyphenols, which were present at concentrations of 62.7, 110, 8.26, 35.7, and 3.8 mg/g, respectively. The concentration of extract required to inhibit 50% of 2,2-azino-bis (3-ethylbenzothiazo-line-6-sulphonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazil (DPPH) radical scavenging capacities were 0.36 ± 0.03 and 4.54 ± 0.10 mg/mL, respectively, indicating that CCE exhibits excellent antioxidant activities. CCE showed no cytotoxicity to skin fibroblasts at concentrations ≤ 100 µg/mL, and promoted HA synthesis in fibroblasts. Treatment of fibroblast cells with 100 µg/mL CCE enhances the HA content to 1293 ± 142 ng/mL, which is significantly more than that in the non-treatment (NT) group (p = 0.0067). Further, RNA sequencing detected 1,192 differentially expressed genes (DEGs) in CCE-treated fibroblasts, among which 417 were upregulated and 775 were downregulated. Kyoto Encyclopedia of Genes (KEGG) and Genomes pathway (GO) analysis based on RNA sequencing revealed that CCE mainly affected cytokine-cytokine receptor interaction regulated by HA synthesis-related genes. CCE upregulated HA synthase 2 (HAS2), epidermal growth factor (EGF)-related genes, heparin-binding EGF-like growth factor, C-C motif chemokine ligand 2, interleukin 1 receptor-associated kinase 2, and other genes related to fibroblast differentiation and proliferation. CCE downregulated the gene of matrix metallopeptidase 12 (MMP12), which leads to cell matrix loss. RT-qPCR further verified CCE significantly upregulated HAS2 expression and significantly downregulated MMP12 expression, thus promoting hyaluronan synthesis. CCE shows potential as a moisturizer and anti-aging agent in functional foods and cosmetics.


Subject(s)
Cordyceps , Hyaluronic Acid , Humans , Hyaluronic Acid/pharmacology , Hyaluronic Acid/metabolism , Matrix Metalloproteinase 12/metabolism , Hyaluronan Synthases , Cordyceps/metabolism , Aging , Fibroblasts/metabolism
17.
Adv Mater ; 35(44): e2303299, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37459592

ABSTRACT

Restoring joint homeostasis is crucial for relieving osteoarthritis (OA). Current strategies are limited to unilateral efforts in joint lubrication, inhibition of inflammation, free radicals scavenging, and cartilage regeneration. Herein, by modifying molybdenum disulfide (MoS2 ) with Mg2+ -doped polydopamine and coating with polysulfobetaines, a dual-bionic photothermal nanozyme (MPMP) is constructed to mimic antioxidases/hyaluronan synthase for OA therapy. Photothermally enhanced lubrication lowers the coefficient of friction (0.028) in the early stage of OA treatment. The antioxidases-mimicking properties of MPMP nanozyme contribute to eliminating reactive oxygen and nitrogen species (ROS/RNS) (over 90% of scavenging ratio for H2 O2 /·OH/O· 2 - /DPPH/ABTS+ ) and supplying O2 . With NIR irradiation, the MPMP nanozyme triggers thermogenesis (upregulating HSP70 expression) and Mg2+ release, which promotes the chondrogenesis in inflammatory conditions by deactivating NF-κB/IL-17 signaling pathways and enhancing MAPK signaling pathway. Benefiting from HSP70 and Mg2+ , MPMP-NIR shows HAS-mimicking activity to increase the intracellular (twofold) and extracellular (3.12-fold) HA production. Therefore, MPMP-NIR demonstrates superior spatiotemporally therapeutic effect on OA in mice model, in terms of osteophytes (83.41% of reduction), OARSI scores (88.57% of reduction), and ACAN expression (2.70-fold of increment). Hence, insights into dual-bionic nanozymes can be a promising strategy for OA therapy or other inflammation-related diseases.


Subject(s)
Osteoarthritis , Photothermal Therapy , Mice , Animals , Hyaluronan Synthases/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Inflammation/drug therapy , Signal Transduction , Reactive Oxygen Species/metabolism
18.
World J Microbiol Biotechnol ; 39(9): 227, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37326689

ABSTRACT

The membrane enzyme of hyaluronan synthase (HAS) is the key enzyme in hyaluronic acid (HA) biosynthesis by coupling UDP-sugars. Prior studies proposed the C-terminus region of HAS enzyme mediates the production rate and molecular weight of HA. The current study describes the isolation and characterizations of a transmembrane HAS enzyme isolated from Streptococcus equisimilis Group G (GGS-HAS) in vitro. The effect of transmembrane domains (TMDs) on HA productivity was determined and the shortest active variant was also identified by recombinant expression of full-length and five truncated forms of GGS-HAS in Escherichia coli. We found that the GGS-HAS enzyme is longer than that of S. equisimilis group C (GCS-HAS) which includes three more residues (LER) at the C-terminus region (positions 418-420) and also one-point mutation at position 120 (E120D). Amino acid sequence alignment demonstrated 98% and 71% identity of GGS-HAS with that of S. equisimilis Group C and S. pyogenes Group A, respectively. The in vitro productivity of the full-length enzyme was 35.57 µg/nmol, however, extended TMD deletions led to a reduction in the HA productivity. The HAS-123 variant showed the highest activity among the truncated forms, indicating the essential role of first, second, and third TMDs for the full activity. Despite a decline in activity, the intracellular variant can still mediate the binding and polymerization of HA without any need for TMDs. This significant finding suggests that the intracellular domain is the core for HA biosynthesis in the enzyme and other domains are probably involved in other attributes including the enzyme kinetics that affect the size distribution of the polymer. However, more investigations on the recombinant forms are still needed to confirm clearly the role of each transmembrane domain on these properties.


Subject(s)
Glucuronosyltransferase , Hyaluronic Acid , Hyaluronan Synthases/genetics , Hyaluronan Synthases/chemistry , Hyaluronic Acid/chemistry , Hyaluronic Acid/metabolism , Glucuronosyltransferase/genetics , Glucuronosyltransferase/chemistry , Glucuronosyltransferase/metabolism , Polymerization
19.
Int J Mol Med ; 52(1)2023 Jul.
Article in English | MEDLINE | ID: mdl-37232339

ABSTRACT

Osteoarthritis (OA) is a progressive joint disorder, which is principally characterized by the degeneration and destruction of articular cartilage. The cytoskeleton is a vital structure that maintains the morphology and function of chondrocytes, and its destruction is a crucial risk factor leading to chondrocyte degeneration and OA. Hyaluronan synthase­2 (HAS­2) is a key enzyme in synthesizing hyaluronic acid (HA) in vivo. The synthesis of high molecular weight HA catalyzed by HAS­2 serves a vital role in joint movement and homeostasis; however, it is unclear what important role HAS­2 plays in maintaining chondrocyte cytoskeleton morphology and in cartilage degeneration. The present study downregulated the expression of HAS­2 by employing 4­methylumbelliferone (4­MU) and RNA interference. In vitro experiments, including reverse transcription­quantitative PCR, western blotting, laser scanning confocal microscopy and flow cytometry were subsequently performed. The results revealed that downregulation of HAS­2 could activate the RhoA/ROCK signaling pathway, cause morphological abnormalities, decrease expression of the chondrocyte cytoskeleton proteins and promote chondrocyte apoptosis. In vivo experiments, including immunohistochemistry and Mankin's scoring, were performed to verify the effect of HAS­2 on the chondrocyte cytoskeleton, and it was revealed that inhibition of HAS­2 could cause cartilage degeneration. In conclusion, the present results revealed that downregulation of HAS­2 could activate the RhoA/ROCK pathway, cause abnormal morphology and decrease chondrocyte cytoskeleton protein expression, leading to changes in the signal transduction and biomechanical properties of chondrocytes, promotion of chondrocyte apoptosis and the induction of cartilage degeneration. Moreover, the clinical application of 4­MU may cause cartilage degeneration. Therefore, targeting HAS­2 may provide a novel therapeutic strategy for delaying chondrocyte degeneration, and the early prevention and treatment of OA.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Cytoskeleton/metabolism , Down-Regulation , Hyaluronan Synthases/metabolism , Osteoarthritis/metabolism , rhoA GTP-Binding Protein/metabolism , Signal Transduction
20.
J Biol Chem ; 299(6): 104826, 2023 06.
Article in English | MEDLINE | ID: mdl-37196767

ABSTRACT

Cutaneous hyaluronan (HA) is depolymerized to intermediate sizes in the extracellular matrix, and further fragmented in the regional lymph nodes. Previously, we showed that the HA-binding protein involved in HA depolymerization (HYBID), also known as KIAA1199/CEMIP, is responsible for the first step of HA depolymerization. Recently, mouse transmembrane 2 (mTMEM2) with high structural similarity to HYBID was proposed to be a membrane-bound hyaluronidase. However, we showed that the knockdown of human TMEM2 (hTMEM2) conversely promoted HA depolymerization in normal human dermal fibroblasts (NHDFs). Therefore, we examined the HA-degrading activity and function of hTMEM2 using HEK293T cells. We found that human HYBID and mTMEM2, but not hTMEM2, degraded extracellular HA, indicating that hTMEM2 does not function as a catalytic hyaluronidase. Analysis of the HA-degrading activity of chimeric TMEM2 in HEK293T cells suggested the importance of the mouse GG domain. Therefore, we focused on the amino acid residues that are conserved in active mouse and human HYBID and mTMEM2 but are substituted in hTMEM2. The HA-degrading activity of mTMEM2 was abolished when its His248 and Ala303 were simultaneously replaced by the corresponding residues of inactive hTMEM2 (Asn248 and Phe303). In NHDFs, enhancement of hTMEM2 expression by proinflammatory cytokines decreased HYBID expression and increased hyaluronan synthase 2-dependent HA production. The effects of proinflammatory cytokines were abrogated by hTMEM2 knockdown. A decreased HYBID expression by interleukin-1ß and transforming growth factor-ß was canceled by hTMEM2 knockdown. In conclusion, these results indicate that hTMEM2 is not a catalytic hyaluronidase, but a regulator of HA metabolism.


Subject(s)
Hyaluronic Acid , Hyaluronoglucosaminidase , Animals , Humans , Mice , Cytokines , HEK293 Cells , Hyaluronan Synthases/genetics , Hyaluronic Acid/metabolism , Hyaluronoglucosaminidase/genetics , Hyaluronoglucosaminidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...